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1 Introduction to Tensor Networks

Solutions 1

1. Consider the following tensors, in which all indices are three-dimensional, indexed from 0:

A i

j
= i2 − 2j,

B

i j

k
= −3ij + k, (Sols.1.1)

Ci

j

= j
Di

j
k

= ijk. (Sols.1.2)

Calculate the value of the following tensor network:

A

B C

D
(Sols.1.3)

First we begin by picking a global designation of the indices which is consistent with
the contractions required:

A β

α
= β2 − 2α,

B

α γ

δ
= −3αγ + δ, (Sols.1.4)

Cδ

ε

= ε
Dβ

γ
ε

= βγε. (Sols.1.5)

Now that our indices have been matched up, the overall value of the tensor network
T is given by the product of the above values, summed over all index labelling

T =

2∑
α,β,γ,δ,ε=0

Aα,βBα,γ,δCδ,εDβ,γ,ε (Sols.1.6)

=
2∑

α,β,γ,δ,ε=0

(β2 − 2α)(−3αγ + δ)βγε2 (Sols.1.7)

= 1080. (Sols.1.8)

2. In this question we are going to consider expanding out a contraction sequence, in a manner
which would be needed when coding up contractions. Given a network, and an associated
bubbling, we wish to write out a table keeping track of the indices of the current object,
the tensor currently being contracted in, the indices involved in that contraction, and new
indices left uncontracted. For example for the network

A C

B

β

α γ

δ (Sols.1.9)

2



where the bubbling is performed in alphabetical order, then the table in question looks like

Current Tensor Contract New

– A – α, β
α, β B α γ
β, γ C β, γ δ

For the tensor network

A

B C

D

Eα

β

γ

δ

ε

, (Sols.1.10)

construct a corresponding table, where contraction is once again done in alphabetical or-
der.

Current Tensor Contract New

– A – α, β
α, β B α γ
β, γ C γ δ,ε
β, δ, ε D β, δ
ε E ε –

3. (a) Calculate the contraction of the tensor network in Eq. (Notes.1.19) for bond di-
mension 3, i.e. calculate the number of three-colourings of the corresponding graph.

Numerically contracting the tensor network given in the notes gives a total num-
ber of vertex 3-colourings of 30.

(b) Using the e and n tensors from Sec. Notes.1.5, come up with a construction for a tensor
network which gives the number of edge colourings. For a planar graphs, construct an
analogous network to count face colourings.
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First we note that index values already correspond to edges, thus by simply
placing an n tensor at every vertex of a graph, the tensor network given counts
edge colourings.

As for a face colouring, we can simple apply the vertex colouring construction to
the dual graph. As such we place e tensors on each face, and n on each edge, as
below.

n n

n n

n

e

e

e

e

(Sols.1.11)

(c) Using tensor networks, determine the minimum number of colours required to vertex
and edge colour the below graph (known as the chromatic number and index respec-
tively).

(Sols.1.12)

This is the Grötzsch Graph, it has chromatic number and index 4 and 5 respec-
tively.

4. Much like the singular value decomposition, given a bisection of the indices we can consider
norms of tensors.

(a) Does the operator norm depend on the bisection, i.e. are the operator norms across
any two bisections of the same tensor necessarily equal?

Yes it does depend on the bisection. A simple example is given by a generic
matrix M . Treating it as a matrix, it has operator norm ‖M‖∞. If however
we vectorise M , treating it as a vector, then the operator norm of this vector
corresponds to the Frobenius norm of the matrix ‖M‖F . In general these two
norms differ, and thus the operator norm is bisection-dependent.
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(b) What about the Frobenius norm? If they can differ, give an example, if not draw
a tensor network diagram that shows it to be manifestly independent of bisection.

For a matrix M , the square of the Frobenius norm is Tr(MM ′). Taking a rank-3
tensor this looks like

AĀ . (Sols.1.13)

By simply wrapping the external leg around however we can see that this simply
equals

AĀ (Sols.1.14)

which is the squared Frobenius norm of the vectorisation. By a similar argument
the Frobenius norm in any grouping can be shown to be equal to that of the
vectorisation. Thus the Frobenius norm of a tensor is independent of the bisection
with respect to which it is calculated.

‖A‖F =

√ ∑
i1,...,ir

|Ai1,...,ir |2

5. Write out the Einstein notation corresponding to the network in Eq. (Notes.7.1).

The purpose of this exercise is to show that for networks for which the number of
indices is too high for Einstein notation, TNN can remain legible.

5



2 Quantum information examples

Solutions 2

1. Consider the inverse of teleportation. Alice wishes to send classical bits to Bob, and pos-
sesses a quantum channel through which she can send Bob qubits. How many bits of
information can be communicated in a single qubit? For simplicity consider the case where
Bob can only perform projective measurements.

As we are dealing with a qubit the only non-trivial projective measurements are pro-
jectors on to pure states. As a result, after performing such a measurement the state
is entirely fixed, i.e. only the first measurement actually yields useful information. As
such a maximum of 1 bit can be extracted in this way. This bound is saturated by
the trivial (classical) encoding. This is a specific case of a more general bound known
as Holevo’s Theorem, which states that only n bits may be extracted from n qubits
under a slightly more general setting.

2. Suppose Alice and Bob initially shared a Bell pair. Does this pre-shared entanglement
resource boost the amount of classical information that can be successfully communicated,
and if so by how much? Hint: Notice that the four possible Bell states differ by a Pauli
acting on a single qubit.

Yes, indeed 2 bits may be transferred by leveraging this pre-shared entanglement.
Suppose that Alice has two bits, i and j. She performs on her Bell qubit the Pauli
p := XiZj , and then transmits her qubit back to Bob. The state which Bob now
possesses is |ψ〉:

ψ = Ω
p

Alice

Bob

= Ω(p) (Sols.2.1)

If Bob now measures in the Bell basis, he will recover the outcome p, from which he
can back out i and j. As such Alice has successfully transmitted two bits to Bob. This
procedure is known as superdense coding.
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3 Matrix Product States

Solutions 3

1. Describe the state given by an MPS with tensor

A =

0 1


00 1 0
10 0 1
01 1/2 −1/2
11 1/2 −1/2

1

2

3A
, (Sols.3.1)

where index ordering is as shown and indices 1 and 2 are combined. Boundary condi-
tions require inserting a Pauli Z before closing periodic BCs, similar to Eq. (Notes.3.19).

Consider the self-inverse Hadamard gate. Performing a gauge transformation corre-
sponding to contracting Hadamards onto each virtual bond, we end up with with a
new MPS tensor

B =

0 1


00 1 0
10 0 1
01 0 1
11 0 0

. (Sols.3.2)

and a boundary condition now corresponding to closing on anX gate. We can recognise
this as the MPS of Eq. (Notes.3.18), meaning that this described the W-state.

2. Describe the state given by the MPS whose only nonzero components are

0

0

0A
=

1

0

1A
=

0

1

1A
=

1

1

0A
= 1, (Sols.3.3)

where the left and right boundary conditions are |0〉.
Hint: Writing out the matrices corresponding to fixing the physical index might help!

We have that

A0 =

(
1 0
0 1

)
= 1, A1 =

(
0 1
1 0

)
= X. (Sols.3.4)

Therefore, if we begin on the left end in the 〈0| state, we must insert an even number
of A1 before we reach the right |0〉. Thus, we obtain the state

|ψ[A]〉 =
∑
|even number of 1s〉. (Sols.3.5)
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3. Describe the qudit state given by the MPS

i

j

i⊕ jA
= 1 (Sols.3.6)

where i, j ∈ Zd, ⊕ denotes addition mod d, the left boundary condition is |0〉, and the right
boundary is |q〉 for some q ∈ Zd.

We have that

A1 =



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0


(Sols.3.7)

We can recognise A1 as the (transpose of) the generalised PauliX matrix and Ak = Ak1.
Therefore, if we begin on the left end in the 〈0| state, we must insert Aks such that
the sum of the string (mod d) is q before we reach the right |q〉. Thus, we obtain the
state

|ψ[A]〉 =
∑
|strings summing to q〉. (Sols.3.8)

4. Let G be some group. Describe the operator given by the MPO with

g

h

h

g · hM = 1 (Sols.3.9)

where the left boundary condition is 0, the right boundary is some group element q and ·
denotes group multiplication.

This is a generalisation of problem 3. Rather than a state, we end up with an operator.
Rather than summing to q, the operator terms should multiply to q (under the group
operation). We end up with the operator which projects onto states which multiply
to q.

5. Suppose the local basis is labelled by particle number. What is the action of the following
operator (bond dimension linearly increasing left to right)?

n

m

m

n+mM = 1 (Sols.3.10)

with left vector L = |0〉 and right vector R =
∑N

i=0 i|i〉.
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This is similar to the operator in problem 4, however rather than projecting onto a
subspace, the operator multiplies a state summing to j by the number j. Therefore,
taking expectations of this operator returns the expected particle number.

6. Write an MPO for the transverse-field-cluster Hamiltonian

H = −J
∑
j

Zj−1XjZj+1 − h
∑
j

Xj . (Sols.3.11)

Hint: This can be done with bond dimension 4.

We can use the construction in Appendix Notes.A, we obtain

M =


1 0 0 0
Z 0 0 0
0 X 0 0
−hX 0 −JZ 1

 , (Sols.3.12)

with left and right vectors

L =
(
0 0 0 1

)
R =

(
1 0 0 0

)T
. (Sols.3.13)

7. Use the ideas of MPSs and MPOs to prove that log depth quantum circuits can be simulated
efficiently on a classical computer.

Suppose we have a log depth circuit acting on |0〉⊗N . Breaking U down in to circuit
elements, the state we wish to know has the form

ψ = U

0 0 0 0 0

=

0 0 0 0 0

log(n)
(Sols.3.14)

Net we decompose our gates into single qubit tensors:

= = (Sols.3.15)

We now use this factorisation, and vertically group our tensors together. The resulting
state is an MPS.

0 0 0 0 0

= (Sols.3.16)

As our circuit has only logarithmic depth, the bond dimension is at most polynomial,
allowing our classical simulation to be efficient.
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4 Classifying Gapped Phases in 1D

Solutions 4

1. The group Z2 × Z2 has the presentation Z2 × Z2 = 〈x, z|x2 = z2 = e, xz = zx〉. Show that
the Pauli matrices form a projective representation of Z2 × Z2.

Hint: let vx = X, vz = Z, vxz=zx = Y and show that vgvh = ω[g, h]vgh, where ω is some
phase.

Let vx = X, vz = Z and vxz = Y . We can then calculate ω[g, h], obtaining

e x z xz


e 1 1 1 1
x 1 1 −i i
z 1 i 1 −i
xz 1 −i i 1

. (Sols.4.1)

2. Determine the factor system ω[g, h] for the Pauli matrices.

See Problem 1 above.

3. Show that the Pauli projective representation is not equivalent to a linear representation.

Hint: xz = zx, can we rephase vx and vz to make vxvz − vzvx = 0?

If we had a linear representation, we would have uxuz−uzux = 0. Consider rephasing
the vs

vg → eiφgvg. (Sols.4.2)

The commutator then becomes

ei(φx+φz) (vxvz − vzvx) . (Sols.4.3)

Therefore no rephasing can bring this to 0, so the Paulis do not form a linear repre-
sentation.

4. Recall from Section Notes.3.2 that the symmetry of the cluster state is Z2 × Z2, with the
action on the MPS tensor being

X
=

Z Z

,
X

=
X X

. (Sols.4.4)

What can we conclude about the cluster state?
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Since the Paulis form a nontrivial projective representation of Z2 × Z2, we know that
the cluster state is in a nontrivial phase. That is, it cannot be transformed into a
product state using a constant depth local circuit with Z2 × Z2 symmetry.
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5 Tensor network algorithms

Solutions 5

1. Consider the critical transverse Ising model

H = −
n−1∑
i=1

XiXi+1 −
n∑
i=1

Zi. (Sols.5.1)

For open boundary conditions, it is known that the ground state energy as a function of n
has the form

E(n) = 1− csc

(
π

αn+ β

)
(Sols.5.2)

for some integers α and β. Using either DMRG or TEBD, estimate the ground state energy
for several chain lengths and calculate α and β.

Running this for moderate system sizes, bond dimensions, and time-scales, with either
DMRG or TEBD, it is relatively easy to calculate that α = 4, β = 2.

2. It is known that the Local Hamiltonian problem is in P for gapped Hamiltonians.
DMRG and TEBD are the most common techniques for numerically finding the ground
states of such systems. For a gapped and 1D local Hamiltonian, prove that DMRG or
TEBD converge.

This was a somewhat of trick question. Despite the complexity of the underlying
problem and the practical power of these algorithms both being well understood,
a satisfactory theoretical understanding of the effectiveness of DMRG/TEBD is an
elusive open problem. Even a concrete statement of the convergence properties that
these algorithms possess is still a topic of debate.
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6 Projected Entangled Pair States

Solutions 6

1. What is the PEPS tensor required to build the GHZ state on the honeycomb lattice where
spins reside on vertices?

Let the PEPS tensor be the ‘delta-tensor’, the tensor which is 1 if all indices are equal
and zero otherwise. Fixing boundary conditions to be |+〉 on each index give the GHZ
state.

2. Which 2 qubit gate is obtained by contracting the following tensors along the horizontal
index?

u

i

j

k = δi,j
(
δk,0 + (−1)iδk,1

)
, v

x

y

z = δx,y,z. (Sols.6.1)

Performing the contraction over the horizontal bond, we obtain

00 10 01 11


00 1 0 0 0
10 0 1 0 0
01 0 0 1 0
11 0 0 0 −1

, (Sols.6.2)

where the row indices are (ix) and the column indices are (jy). We recognise this as
the CZ gate.

3. The cluster state can be prepared from the all |+〉 state by applying CZ between all adjacent
spins. Show that Eq. (Notes.6.20) indeed gives the cluster state.

Hint: Consider the decomposition of a gate given in the above problem.
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We have a decomposition of the CZ operator in 2. It remains to build a PEPS tensor
from this. The only tricky part is ensuring that when the bonds link up, each ‘u’
tensor connects to a ‘v’ tensor. The PEPS tensor is therefore

|+〉

u

u

v

v

. (Sols.6.3)

Contracting this, we obtain the tensor in Eq. (Notes.6.20).

4. Investigate how logical operators on the physical spins of the Toric code can be pulled onto
the virtual level of the PEPS. Can you see why G-injectivity is so important for topologically
ordered PEPS?

The logical operators of the Toric code are build from strings of Zs and Xs. Consider
placing a single Z on a physical bond of the PEPS tensor in Eq. (Notes.6.17). It is
not hard to see that

Z

=

Z

Z . (Sols.6.4)

We can use this to understand how the physical Z string pulls through to the virtual
level.

Z

Z
Z

Z Z

Z →

Z

Z

Z Z

Z
. (Sols.6.5)
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Which has two physical Zs corresponding to the end points of the string, and a virtual
string of Zs. This string can be moved around using the rules of Eq. (Notes.6.19).

We can do the same exercise for the X string and obtain

X

=

XX

, (Sols.6.6)

X

X
X

X

X

→
X

X

. (Sols.6.7)

Thus, the X string pulls through to an isolated pair of Xs acting on the virtual level
at the ends of the string.

The G−injectivity property is the ability to pull the Z string through the PEPS tensor,
which means the presence of a Z string is not locally observable.

5. Convince yourself that evaluating expectation values on the PEPS constructed from a
classical partition function indeed reproduces the thermal expectation values.

Play with the network! Pull the expectation up to the virtual level and flatten.
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7 Multiscale Entanglement Renormalisation Ansatz

Solutions 7

1. Can you find a MERA for the W state?

For this we are going to construct a tree (u = 1) that takes the W-state n qubits to
the W-state on 2n qubits.

0

0 0

=

1

1 0

=

1

0 1

= 1 (Sols.7.1)

It can be seen that by applying this isometry to a W-state will expand it. Thus if we
take a tree with top tensor T = |1〉, then we recover the full W-state.

2. What state is given by the MERA with

= , (Sols.7.2)

u = 1 and top tensor T = 1√
2
(|00〉+ |11〉)?

Firstly note that the top tensor T ∝ |00〉+ |11〉 is simply the Bell state, i.e. T = .

Drawing the tree out for 8 sites (16 qubits), we have:

= (Sols.7.3)

We therefore have the periodic state consisting of Bell states shared between each
neighbouring site, i.e. the state on which PEPS is based. As a result we can see that
any MPS state can therefore be prepared from a MERA by modifying one single layer.

3. The above state is the ground state of the Hamiltonian

H = −
N/2∑
j=1

(X2jX2j+1 + Z2jZ2j+1) (Sols.7.4)
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on periodic boundary conditions. Is that clear? Can you find a unitary U2j−1,2j which
transforms this Hamiltonian into

H = −
N/2∑
j=1

(Z2j−1X2jZ2j+1 + Z2jX2j+1Z2j+2)? (Sols.7.5)

Let U2j−1,2j = (1 ⊗ h)CZ, where h is the Hadamard gate, and let U =
⊗

j U2j−1,2j ,
then U †HU is as desired.

4. Act with the above transformation U on the MERA tensor to obtain another MERA tensor.
What is this state?

We want this to be a ground state of the transformed Hamiltonian, so we need U †|ψ〉.
If we transform the lower indices on the second layer of the MERA with U † (so that
each tensor is identical), then we must transform the upper indices of the lower layer
(i.e. ensure that above the physical layer, U is acting as a gauge transformation). The
tensor we obtain is

H
, (Sols.7.6)

so this is the cluster state.

5. What is the maximum range of thermodynamic observables in a ternary MERA scheme?

We can easily see this by examining the causal cones (indicated by a line) of various
sized operators in the MERA. We see that there is one special location where 3 site
operators are maintained (red line). Elsewhere, each operator eventually shrinks to
two sites (blue lines).

, (Sols.7.7)

6. What does the reduced density matrix on a few sites of the MERA look like? Notice that
it corresponds to the top tensor being passed through a CPTP map several times, this is
usually called the descending superoperator.
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Consider taking the MERA in Eq. (Notes.7.11), and look at the reduced density matrix
on the support of the operator.

ρ = (Sols.7.8)

Note that in the above diagram, the five pairs of leg near the centre of the diagram
are unconnected, corresponding to the reduced density matrix – all other physical legs
are connected corresponding to the partial trace. Firstly we notice that everything
outside of the light code (red shaded region) cancels out. Using this, and flipping the
diagram inside out, we get that the reduce density matrix has the form:

(Sols.7.9)

where the blue circle is the top tensor T . We can see that this simply corresponds to
applying the map dual to the descending super-channel multiple times

E∗(σ) = σ . (Sols.7.10)

Thus we see that reduced density matrices generally take the form

ρ = (E∗)n (|T 〉〈T |) . (Sols.7.11)

7. Do tree tensor networks (i.e. MERA for u = 1) have any area law violation on contiguous
regions?
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(Sols.7.12)

The indicated region (and any similar subtree) can be removed by cutting a single
bond. Therefore, the area law is not violated on such regions.
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